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Several materials measured by multiple labo-
ratories — two-way mixed model

e Bayesian Model

e Likelihood Analysis

e Extension of Mandel-Paule Method

e Example



The Problem

e Each of p laboratories makes repeated mea-
surements of m materials.

e The number of measurements made can
differ among the laboratories, but each
material is measured the same number of
times by each |laboratory.

e [ he within-laboratory variances can differ.

e [ he selected laboratories can be regarded

as a random sample from an infinite pop-
ulation of laboratories.

How should one estimate ‘consensus’
values for the quantities measured, and
what are the uncertainty in this esti-
mates?




Example :
Li and Cardozo (1994)
J. Of AOAC Int., 77, p. 689

Nine labs each measures fiber in six foods, in

blind duplicates.

Dietary Fiber

Sample Laboratory
1 2 o)
Apples 12.44 12.87 12.08
12.48 13.20 12.38
Apricots 25.05 27.16 25.31
25.58 26.29 25.43
FIBRIM 74.07 76.55 73.96
75.01 78.36 74.24




Hierarchical Model With Noninformative
Priors: Two-Way Model

1 =1,...,p indexes laboratories
73 =1,...,n; indexes measurements

kEk=1,...,m indexes materials
Tijk = O + € + e
independent ¢; ~ N (0,02), e;x ~ N (0,02).
p(;116i, 0k, 07) = N (8; + 0y, 07),
p(o;) < 1/0;,
p(8;lpu, 0%) = N (,0?),

can handle

p(o;) x o°



Posterior of ({6.},0)

Let 7, and Z denote independent Student-t
and standard normal random variables, and
assume that v > 0 and v > 0. Then

_ i

has generalized t-distribution with the density

fv (u; )

y(v+1)/2—1e—y[1+#iu}

= 1 /OO dy.
r(v/2)y/7 /o Viy + v

The posterior of ({6,},0) is

Ty — 1, 207
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I/i:’n,i—].



t7 = > (@i — Tir)?
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+1; Y Fip — T5.)% 1 > (0 — 0)?]
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Given o = 0, the posterior distribution of the
consensus means 6. is proportional to a prod-
uct of scaled t-densities:

P 1 Tif —
kM
POkl {zijn}, 0 = 0) oc [[ —T5, 1 (—) .
=1 “1 1

t .

T hese densities reflect uncertainties in 6.

In the general case the posterior is propor-
tional to the product of the appropriate gen-
eralized (symmetric) t-densities, centered at
each lab average ;.



Matrix Formulation

A matrix formulation of the model.: the :th
laboratory repeats its vector measurements
n; times, the m-dimensional data {z;;} for
r=1,...,pand 3y =1,...,n; follow a two-way
MANOVA model, which may be both unbal-
anced and heteroscedastic

independent ¢; ~ N, (0, c2ele), e;; ~ Nm(0,%;),

17 =1,...,n;.

Here ele is a covariance matrix (of rank one),
and o2 is the unknown variance: 0 represents
unknown m-dimensional common to all lab-
oratories mean; X2 and o2 are the nuisance
parameters.



A more general model,

ri; = B;[0 + €] + e,
independent ¢; ~ N (0,02=) e;; ~ N, (0, ;).

The design matrices B; have sizes m; X m,
the known m x m matrix = may have rank
smaller than m, and 6 represents unknown m-
dimensional structural parameter common to
all laboratories.

The covariance matrices 2 ; of size m; X m;
and the unknown variance o2 are the nuisance
parameters.

This model allows for the situation when some
of the laboratories do not perform measure-
ments on all components of 4, but rank (B;) =

m.

For simplification in this talk B; = 1.



The statistics z; = ] _q mij/ng, Si = E?i:l(fvz'j—
ZIZZ)T(SUZJ — :IZZ)/VZ are sufficient.

The generalized m-dimensional t-distribution
with density f, (u; W) is that of the sum

U=V,+ 72

where independent Z ~ N, (0,W¥) and V has
the density proportional to

1407 x o] T2

The posterior of (6,0) is

p(07 0|{xz]})

p
x p(o) H

1=1

—1 2m—
—0):2 T

The same interpretation.



Likelihood Analysis

Put

—1
Wi = lizi —I—JQE] .

Uz

The loglikelihood function can be written in
the form

20 =" (x; — 0) w;(z; — 6) — > log |w;]
i i
p p )

+ Y ylog |+ > yitr (Z7°5) + C.
lLLocal extreme points are possible. Cochran
(1937), (1954), (1980). Vangel and Rukhin
(1999)

The MLE of 6 has the form

R p 1y
0 = Z Wsq Z Wiy,
1=1 1=1



When ¥, and o are given, 8 gives the optimal
estimator of € in the sense that it minimizes
the sum of the mean squared errors

E(Z—0)(F—0)T

within the class of unbiased ‘“linear estima-
tors” x of 8, x = > ; A;x; with some matrices
A;. Thus it generalizes the classical weighted
means statistics used when m = 1.

Extension of Mandel-Paule Method

Even without the normality assumption (only
under existence of second moments) one has
for 0

» 1
E(z; — ) (z; — 01 = wi_l — {Z wk] :

E(x; — 0)Tw;(z; — 0) is a scalar,



p
Z E(z; — 0) w;(z; — 0)

=1
& A NT
=Y tr (E(a:i — ) (z; — 0) wi>
i=1
p p -1
= Z tr | Iy, — Z Wk wy
i=1 k=1

=mp—m=m(p—1).

This identity can be used as the estimating

equation for 8 and 02, provided that >, are
estimated by S;.

This method consists in restricting the class
of estimators of w; to those of the form [n;15i+
y=]~1 for some positive y. With the “weights”

w; = wi(y) = [n; 18 +y=]71,



an estimator of 6§ from this class has the rep-
resentation

p 1y
T=2z(y) =D wi| > wuz;.
i=1 i=1

The suggestion is to select the estimator out
of this class, i.e. to choose y, which is de-
signed to estimate 02, as the solution of the
equation

p
> (zi— ) wi(y) (@ —2) =m(p-1). (1)
i=1

A direct analogue of the Mandel-Paule algo-
rithm widely used at NIST in the case m = 1.
This is an easily implementable method sug-
gested by Mandel and Paule (1970), Paule
and Mandel (1982). It is known often to pro-
vide reasonable estimates. Schiller and Eber-
hardt (1992)- a discussion of this method as
used in the preparation of standard reference
materials.



This extension of the Mandel-Paule rule pro-
vides the estimate x of the common parame-
ter 6 along with the estimate y of o2.

Properties:

e the Mandel-Paule rule is well defined, i.e.
(1) has at most one positive solution;

e The left-hand side of (1) is a monotoni-
cally decreasing convex function.

Interpretation: an “approximate’” version of
the maximum likelihood estimator (or rather
of the restricted maximum likelihood estima-
tor)

p
S (w — ) wi(y) (g — &) = mp

i=1
This can be obtained from reparametrization
of likelihood equation by estimating 2 ; by S;,



which leads to the maximum likelihood esti-
mate of o2 of the form

5_2

%

Sy i = B)7 (0 18+ =) (2~ 0) +n - mp
Y :
n

Thus the Mandel-Paule rule is characterized
by the following fact:

52~y.

Rukhin and Vangel (1998)

To obtain a confidence set for 8 assume that p
Is large. Under some conditions x has approxi-
mately m-dimensional normal distribution with
mean 0 and the covariance matrix which can
be estimated by




Provided Y is nonsingular, one obtains an ap-
proximate (1 — «)-confidence ellipsoid for 6,

{0:@-0)"r1@-0) <xa(m)},
x2(m) - a-critical point for the x2— distribu-

tion with m degrees of freedom.

The method extends to the situation when
S; w; May be non-invertible, as with [Zle wz}
denoting the Moore-Penrose pseudoinverse,

R p P
0= |> wi| Y wz,
i—1 i—1

and

p
E(z; — 0)(z; — @)T =w;, — {Z wk]
k=1

Then the equation (1) is to be re[placed by
& T
Y (zi—z) wi(y)(zi—T) =mp—q
i=1

with ¢ = rank (S5_; wy).



Dietary Fiber in Apricots

, 2

25.32 0.37
26.72 0.62
27.89 0.35
27.70 1.85
27.42 0.61
24.30 0.21
27.11 0.37
27.28 0.09
25.37 0.08
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Mean: x = 26.567

Weighted Means:

MP
ANOVA
MLE

26.472
26.420
27.275



